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PRFFACE

The research reported here was in support of research efforts for the

Air Force Weapons Laboratory, Kirtland AFB, N.M. Of primary interest was

the study and subsequent modeling of two rational flight profiles: a low-

level dash, and a constant airspeed climb. These efforts were part of the

larger problem concerned with "Safe Escape from Base" for aircraft located

at fields alerted for nuclear attack. This research reports the results of

rne study and also contributes to the basic understanding of the larger safe

escape problem.
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SUMMARY

The purpose of this research was to establish two base case scenarios

for "escape" profiles for large conventional aircraft. The two profiles con-

sidered were: (1) a constant altitude dash, and (2) a constant airspeed

climb. The results of these two profiles are presented in the report

Several assumptions were made in the modeling of the two profiles.

The first assumes the aircraft has reached a safe maneuvering airspeed and

altitude. From this point th nodels are employed and generate the results

shown in the figures. The remainder of the assumptions are concerned with

the type of aircraft considered, aerodynamic and pilot limitations, and

operational considerations.

FORTRAN programs are available of the two models.

Thanks must go to Major Roy R. Kilgore, and Captain Joseph B. Williams,

formerly of the Department of Mathematical Sciences, and CIC W. L. Troy

for their efforts in developing the math model.
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SECTION 1

BACKGROUND AND INTRODUCTION

The necessity to plan for a submarine launched ballistic missile attack

on the U.S. military forces has many far reaching implications. In particular,

the deployment of aircraft becomes sensitive to the crucial time variable -

warning time, missile flight time, aircraft response time, and takeoff and

escape time. All of these variables and their interactions are being studied

in the context of the "Safe Escape from Base" problem. An integral part of

this larger problem is the different profiles aircraft may use after takeoff

to "escape" from the parent base under attack.

The research reported here is the result of studying and modeling two

oF the possible "escape" profiles. One profile is concerned with obtaining

the maximum distance in a horizontal sense; in that, once a safe maneuvering

airspeed ind altitude have been reached, the pilot maintains the altitude

and begins a low-level dash away from the base. The other profile attempts

to maximize the distance in a vertical direction by continuing the climb

once a sate airspeed and altitude have been reached. Both of these profiles

will be examined in a setting that is consistent with physical limitations

and current operational procedures.

The reaction and escape time is more crucial to larger, slower air-

craft; c.g., big bombers, tankers and cargo type. As such, the developed

models will use these types ot aircraft as guides in making Judgements on

certain characteristics and parameter values. The following six assumptions

and explanations will be used to define the rational maneuver regime used

in this research:
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1. Acceleration is nonnegative (normal acceleration) - prevents loss of

airspeed and high speed stalls.

2. Max allowable "g" is the aircraft structural limit "g" -

prevents structural damage.

3. Max C _ C for specific aircraft - prevents stalls.
max

pv 2

4. Max q (= ) will not be exceeded - prevents structural damage.

5. Aircraft will have thrust to weight ratio less than one -

simplifies the math model.

6. The models will start at a safe maneuvering airspeed and altitude.

Other specific, assumptions will be made as needed in the development of

the math models given in the appendices.

The remainder of this report is organized as follows: Section 2 describes

and gives results of the constant altitude profile, Section 3 examines the

constant airspeed profile, and Section 4 contains the conclusions. In

addition, Appendices A and B give the development of the math models for the

constant altitude and constant airspeed profiles, respectively.
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SECTION 2

CONSTANT ALTITUDF PROFILE

One of the profiles that should be considered when evaluating various

flight paths of escape from a base under attack is the low-level dash. In this

)rofile the horizontal distance from the base is maximized. This is

accomplished bv climbing to a safe altitude, then leveling off and dashing as

long as necessary For the purposes of this research the assumptions are made

: that in 12S seconds the aircraft can cl-imb to 680 feet, reach a velocity of

ih0 feet/second and reach a horizontal distance of 28,350 feet from the base.

These initial parameter values define the safe maneuvering airspeed and

altitude regime. Additionally, these values will be used as inputs to the

constant altitude dash model.

Given the above safe maneuvering regime, the constant altitude model then

numerically solves the governing differential equation. Appendix A develops

this model and presents the numerical solution technique. Figure 1 presents

ihe results of the constant altitude profile. The figure starts at 125 seconds

on the time axis because this is the time the model is "turned-on" to compute

velocity and distance. The left-hand axis gives the horizontal distance from

the base as a function of time. The right-hand axis gives the velocity as a

function of time and also the distance. Special mention should be made of the

dashed line labeled max velocity. At this time (approximately 240 seconds)

the maximum velocity of this particular aircraft has been reached (approximately

630 feet,-ccond). If the distance from the base must be known for times greater

than 240 seconds a linear equation will give the results. For example,

suppose we want the distance, D, at time T, T greater than 240, then:

D = 630 x (T-240) + 87500. (1)

p 3
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I This completes the presentation of the constant altitude model.

Basicaltv, any aircraft can he modeled with this approach as long as the

assumptions are not violated. Some of the high performance aircraft will

I! violate certain assumptions and model modification would be required. We

will now turn to the examination of a second "escape" profile.

5



SFCTION 3

CONSTANT AIRSPEED PROFILE

The second rational "escape" profile to be considered Is a constant air-

speed climb. This path attempts to maximize the vertical distance from the

base. This research will restrict the climb to one of constant airspeed.

Although this is not necessarily the optimum climb profile, it does represent

current operational procedure and a rational profile considering pilot

limitations.

Again the parameter values of 125 seconds, velocity of 360 feet/second,

altitude of 680 feet, and distance of 28,350 feet will be assumed at the

beginning of the climb. Instead of leveling-off and dashing, the profile

now requires a, rontinuation of the climb with a constant airspeed. Appendix B

develops this model and presents the solution technique. Figure 2 presents the

results of the constant airspeed profile. This figure also starts at 125

seconds because ot the time required to reach the safe maneuvering regime.

The left-hand axis gives the altitude as a function of time. The right-hand

axis gives the horizontal distance from the base as a function of time and

altitude. A reminder should be made that this research was accomplished on

large, relatively slow aircraft. The figure stops at five minutes total

elapsed time only for purposes of illustration. The model could continue to

ialculate the altitude and distance as long as no model assumptions were

violated.

This completes the presentation of the constant airspeed model. Any

aircraft could also be modeled with this approach as long as the assumptions

are not violated.
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SECTION 4

CONCLUSIONS

We have shown the results of two safe maneuvering "escape" profiles.

Although several simplifying assumptions were made in Section 1 and the

Appendices, the developed models have a wide range of application to larger,

slower aircraft. The purpose of this research was to develop a base case

scenario which will allow thp Air Force Weapons Laboratory to use it for

further sophistication and to aid in other decisions regarding further study

efforts. The results depicted on Figures I and 2 provide the results of the

base case scenarios.

To accommodate higher performance aircraft the two models would have to

be modified. rhe extent of the modification would depend on the specific air-

craft and the performance parameters to be modeled. Basically, any changes

to the models could be limited to the subroutines of the Fortran programs.

: 8



APPENDIX A

DEVELOPMENT OF CONSTANT ALTITUDE MODEL

The inputs to this model assume the aircraft has reached a safe maneuvering

airspeed and altitude. This assumptlon is characterized by the initial quantities:

To: elapsed time from take-off to safe maneuvering regime

Vo: velocity at time To

Ao: altitude at time To

Ro: horizontal distance from base at To.

We will now assume the aircraft levels-off and maintains the altitude, Ao,

and accelerates away from base to maximize the horizontal distance. With this

profile a simplified version of the equation of motion reduces to:

m r = T-D (A-1)

where: m = aircraft mass

= aircraft longitudinal- acceleration

T = total thrust

D = total drag.

For the large conventional aircraft considered in this research.

D = (CD + KCL  2 S, (A-2)

0

where: CD : parasite drag coefficient
0

KCL: induced drag coefficient

L

P: iir density

V: velo:ity

S: wing area.

9



The quantities CD , K, CL, and T may all depend on the compressibility or machiU

number. However, for every aircraft, within certain limits, the following

relationships hold:

T is approximately constant

CL is proportional to a (angle of attack)

CD  is approximately constant

V is approximately constant.

During a level flight dash, lift = weight, thus,

2 CL = W

or C 2W (A-4)

With V = r and substituting equations A-2 and A-3 into A-1 the equation of

motion, after rearranging, becomes:

m + CD  PS 2 +2KW 2  1 T (A-5)
D0 2 r s

With the assumptions made earlier (Section 1) and the simplifying assumptions

made in this appendix, equation A-5 is the differential equation governing the

equation of motion for the low-level dash. It now remains to solve the equation.

It is possible to solve equation A-5 in closed form with some further

simplifying assumptions. However, in an attempt to maintain a sense of

generality the equation will be solved numerically by Runge-Kutta. With the

additional assumption of a standard day, the only dependent variables in

equation A-5 are m, W (due to fuel loss), r and r . Weight is related to mass;

thus the dependent variables are m, i, and j'. The Runge-Kutta technique works on

first order differential equations: thus equation A-5 will be treated as a first

order equation in v = r. Upon rearranging, the equation to be solved may be expressed

as: v f (t, m, v) (A-6)

10



where t represents the independent time variable. If the time step, At,

is sufficiently smal.I the position can be calculated from the expression

R =R + (At) v
new old (A-7)

rather than the differential equation R = v which necessitates a second

Runge-Kutta.

The problem to be solved can now be expressed as:

v = f (t, m, v)

4 v (to) = V
0 0

and R = R + (At) Nnew old

with R initiallv set to Ro.

Since the time step will be chosen sufficiently small to enable the use of

equation A-6 Lo determine the position, the mass and weight will be calculated

at the beginning of each iteration rather than internal to the Runge-Kutta

calculation. Furthermore, since t. does not explicitly appear in equation A-6

the simplified notation below is more suggestive of the true problem.

v = f (v). (A-8)

The time variable t will now be indexed for 1 = 0, 1, 2, ... , i+= t.+At
1

and the Runge-Kutta scheme for V. is:

V =vI (K1 + 2K2 + 2K3 + K4) (A-9)Vi+l = i + 1 6

where;

K1 = (At) f(vi)

K2 = (At) f(v 1 + .5 K)

K3 = (At) f(v1 + .5 K2)
= (At) f(v + K

4  K

Summarizing the solution methodology we have:

==Ma



1 Known initial conditions To, Vo, and Ro

2. Index the time variable, t1+ 1 = t i + At, i = 0, 1, 2,

3. Calculate m1 and W. from the fuel loss
I I

4. Calculate v + from equation A-9

5. Calculate R+ = R + (At) v

rhis scheme is repeated until the calculated velocity reaches the maximum

velocity of the specific aircraft tinder study.

12



APPENDIX B

DEVELOPMENT OF CONSTANT AIRSPEED MODEL

The inputs to this model assume the aircraft has reached a safe

maneuvering airspeed and altitude. This assumption is characterized by the

init ial| quantities :

To: elapsed time from take-off to safe maneuvering regime

Vo: velocity at time To

Ao: altitude at time To

Ro: horizontal distance from base at To.

We will now assume the aircraft maintains the true airspeed Vo and continues

to climb at an anglp ¥. In what follows the small variations with altitude and

velocity will be neglected. With a climb angle y a simplified version of the

governing force yields:

L = W cos,' (B-1)

where: L = lift

W = weight

and T - D = W sin y (B-2)

where: T = thrust

D = drag.

For the large conventional aircraft considered in this research, the climb

angle is small; thus upon rearranging equation B-2 we have:

T-D
sin y = " (B-3)

To (ontilnue with the assumptions for the aircraft considered here, we have

2 pV2

D =(C + KC22 ) 2 S (B-4)
D KL) -
0

13



where: C D parasite drag coefficient
0

2
KC2: induced drag coefficient

p : air density

V : velocit 17

S : wing area

]he quantities C , K, CL9 and T may all depend on changes in altitude and speed.
0

However, within the limits of this research, we will assume the following

elationships hold:

T is approximately constant

C L  is proportional to u (angle of attack)

CD  is approximately constant
0

TK is approximately constant

Since the climb angle Y is small (cos a 1) we have from equation B-I that

lift is approximately equal to weight. Thus,

2S
2 'L1. (B-5)-

or CL _ 2W (B-6)

Substituting equations B-4 and B-6 into B-2, we arrive at the expression for

the climb angle:

I T ITS-- C p S --- (B-7)
w 2 D 0 P 2  S

Now let V be the vertical component of velocity and Vh the horizontal

component. Then,

V =V sin y~zVy (B-8)

and

Vh  V cos v A V. (B-9)

14
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ff the time step is chosen sufficiently small, instead of integrating to

obtain altitude and distance we may use the expressions

Anew  A old + (At) Vv (B-10)

i±nd

Rnew R old + (At) Vh. (B-11)

We now have all the quantities to describe the solution methodology. First

we have the known initial conditions To, Vo, Ao, and Ro. The time domain will

now be divided into subintervals of length At and the system will be examined

at the times t.+ = t. + At, i = 0, 1, 2, ... For each i, will be
1+

evaluated since the weight is changing. Then the expressions for the vertical

and horizontal components will be calculated and then finally the altitude and

position will be determined. In algorithmic form, the technique is:

1. Known initial conditions To, Vo, Ao, and Ro.

9. Index the time variable, ti+1 = ti + At, i = 0, 1, 2,

3. Calculate 'y from equation B-7

4. Calculate V and V from equations B-8 and B-9 respectively
5 i

5. Calculate Ai+ 1 = A. + (At) V1+ V.

6. Calculate Ri+ = R+(t)Vh.

I

This scheme may be repeated almost indefinitely. However, before the maximum

altitude is reached the simplifying assumptions will be violated. Thus, it

is recommended that a maximum altitude be included in the scheme. Once

this altitude is reached the model will have to be changed or the aircraft

would have to level-off.

mud
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